Equations

Fluid Properties

ν=Vm\nu=\dfrac{V}{m}

P=FAP=\dfrac{F}{A}

ρ=mV=1ν\rho=\dfrac{m}{V}=\dfrac{1}{\nu}

Pressure

PfA=P0A+mgP_fA=P_0A+mg

Pf=P0+0nρizigP_f=P_0+\sum_0^n\rho_iz_ig

Pf=P0+ρfzgP_f=P_0+\rho_fzg

Pure Substances

νfg=νgνf\nu_{fg}=\nu_g-\nu_f

ν(T)νf(T)\nu(T)\approx\nu_f(T)

ν=xνfg+νf\nu=x\nu_{fg}+\nu_f

R=RMR=\dfrac{\overline{R}}{M}

x=mgm\displaystyle x=\dfrac{m_g}{m}

ν=(1x)νf+xνg\displaystyle \nu=(1-x)\nu_f+x\nu_g

PV=nRT\displaystyle PV=n\overline{R}T

Pν=RT\displaystyle P\nu=RT

PhasePPTTν \nu
Compressed LiquidP>PsatP>P_{sat}T<TsatT < T_{sat}ν<νf \nu < \nu_f
Saturated MixtureP=PsatP=P_{sat}T=TsatT=T_{sat}νf<ν<νg \nu_f < \nu < \nu_g
Superheated VapourP<PsatP < P_{sat}T>TsatT>T_{sat}ν>νg \nu>\nu_g

First Law

Q=ΔU+ΔKE+ΔPE+WQ=\Delta U+\Delta KE+\Delta PE+W

ΔKE=12meve212mivi2\Delta KE=\frac{1}{2}\sum m_ev^2_e-\frac{1}{2}\sum m_iv^2_i

Q=ΔH+ΔKE+ΔPE+WQ=\Delta H+\Delta KE+\Delta PE+W

ΔPE=megzemigzi\Delta PE=\sum m_egz_e-\sum m_igz_i

Work

W=V1V2PdV\displaystyle W=\int_{V_1}^{V_2}PdV

PVn=CPV^n=C

w=Wm\displaystyle w=\dfrac{W}{m}\displaystyle\displaystyle

Internal Energy

U=mu\displaystyle U=mu

Δu=Cv0ΔT\Delta u=C_{v 0}\Delta T

ΔU=meuemiui\displaystyle \Delta U=\sum m_eu_e-\sum m_iu_i

Enthalpy

H=mhH=mh

h=u+Pνh=u+P\nu

Δh=Cp0ΔT\Delta h=C_{p0}\Delta T

H=U+PV\displaystyle H=U+PV

ΔH=mehemihi\displaystyle \Delta H=\sum m_eh_e-\sum m_ih_i

 

Power

W˙=dWdt\dot{W}=\dfrac{dW}{dt}

Q˙W˙=m˙e(he+ve22+gze)m˙i(hi+vi22+gzi)\displaystyle\dot{Q}-\dot{W}=\sum\dot{m}_e\left(h_e+\dfrac{v^2_e}{2}+gz_e\right)-\sum\dot{m}_i\left(h_i+\dfrac{v^2_i}{2}+gz_i\right)

Q˙=dQdt\dot{Q}=\dfrac{dQ}{dt}

 

Conservation of Mass

m˙i=m˙e\displaystyle\sum\dot{m}_i=\sum\dot{m}_e

Transient Flow Process

QcvWcv=me(he+ve22+gze)mi(hi+vi22+gzi)+m2(u2+v222+gz2)m1(u1+v122+gz1)\displaystyle Q_{cv}-W_{cv}=\sum m_e\left(h_e+\dfrac{v^2_e}{2}+gz_e\right)-\sum m_i\left(h_i+\dfrac{v^2_i}{2}+gz_i\right)+m_2\left(u_2+\dfrac{v^2_2}{2}+gz_2\right)-m_1\left(u_1+\dfrac{v^2_1}{2}+gz_1\right)

Thermal Efficiency

η=W˙netQ˙in\displaystyle\eta=\dfrac{\dot{W}_{net}}{\dot{Q}_{in}}

β=Q˙heatingW˙compressor\displaystyle\beta^\prime=\dfrac{\dot{Q}_{heating}}{\dot{W}_{compressor}}

β=Q˙coolingW˙compressor\displaystyle\beta=\dfrac{\dot{Q}_{cooling}}{\dot{W}_{compressor}}

Heat Engines

W=QHQLW=Q_H-Q_L

η=WQH=THTLTH\eta=\dfrac{W}{Q_H}=\dfrac{T_H-T_L}{T_H}

β=QHW=THTHTL\beta^\prime=\dfrac{Q_H}{W}=\dfrac{T_H}{T_H-T_L}

(QHQL)rev=THTL\left(\dfrac{Q_H}{Q_L}\right)_{rev}=\dfrac{T_H}{T_L}

β=QLW=TLTHTL\beta=\dfrac{Q_L}{W}=\dfrac{T_L}{T_H-T_L}

Entropy

δQT=QHTHQL,irrTL<0\displaystyle\oint\dfrac{\delta Q}{T}=\dfrac{Q_H}{T_H}-\dfrac{Q_L,irr}{T_L}<0

s=Sms=\dfrac{S}{m}

TdS=dU+PdVTdS=dU+PdV

s2s1=Cln(T2T1)s_2-s_1=C\ln\left(\dfrac{T_2}{T_1}\right)

s2s1=Cv0ln(T2T1)+Rln(ν2ν1)s_2-s_1=C_{v 0}\ln\left(\dfrac{T_2}{T_1}\right)+R\ln\left(\dfrac{\nu_2}{\nu_1}\right)

Sgen=mc.m.(s2s1)c.m.Q12TsurrS_{gen}=m_{c.m.}(s_2-s_1)_{c.m.}-\dfrac{Q_{1\to 2}}{T_{surr}}

S2S1=12(δQT)rev\displaystyle S_2-S_1=\int_1^2\left(\dfrac{\delta Q}{T}\right)_{rev}

Q12=12TdS\displaystyle Q_{1\to 2}=\int_1^2 TdS

TdS=dHVdPTdS=dH-VdP

s=sf+xsfgs=s_f+xs_{fg}

s2s1=Cp0ln(T2T1)Rln(P2P1)s_2-s_1=C_{p 0}\ln\left(\dfrac{T_2}{T_1}\right)-R\ln\left(\dfrac{P_2}{P_1}\right)

Entropy Analysis

S12=(m2s2m1s1)cv+mesemisiQ12Tsurr\displaystyle S_{1\to 2}=(m_2s_2-m_1s_1)_{cv}+\sum m_es_e-\sum m_is_i-\dfrac{Q_{1\to 2}}{T_{surr}}
wideal=12(vi2ve2)+g(zize)ieνdP\displaystyle w_{ideal}=\dfrac{1}{2}(v^2_i-v^2_e)+g(z_i-z_e)-\int_i^e\nu dP

Device Efficiency

ηT=wTwT,s=hihehihe,s\displaystyle \eta_T=\dfrac{w_T}{w_{T,s}}=\dfrac{h_i-h_e}{h_i-h_{e,s}}

ηN=ve2ve,s2\displaystyle \eta_N=\dfrac{v^2_e}{v^2_{e,s}}

ηP/C=wP/C,swP/C=hihe,shihe\displaystyle \eta_{P/C}=\dfrac{w_{P/C,s}}{w_{P/C}}=\dfrac{h_i-h_{e,s}}{h_i-h_e}

Mixtures

ci=mimtot\displaystyle c_i=\dfrac{m_i}{m_{tot}}

yi=nintot\displaystyle y_i=\dfrac{n_i}{n_{tot}}

Rtot=i=1kciRiR_{tot}=\sum_{i=1}^k c_iR_i

Mtot=[i=1kciMi]1M_{tot}=\left[\sum_{i=1}^k\dfrac{c_i}{M_i}\right]^{-1}

u=i=1kciuiu=\sum_{i=1}^k c_iu_i

Cv0,tot=i=1kciCv0,iC_{v 0,tot}=\sum_{i=1}^k c_iC_{v 0,i}

s2s1=ln(T2T1)i=1kciCp0,iln(P2P1)i=1kciRis_2-s_1=\ln\left(\dfrac{T_2}{T_1}\right)\sum_{i=1}^k c_iC_{p0,i}-\ln\left(\dfrac{P_2}{P_1}\right)\sum_{i=1}^k c_iR_i

i=1kci=1\displaystyle \sum_{i=1}^k c_i=1

i=1kyi=1\displaystyle \sum_{i=1}^k y_i=1

Mtot=mtotntotM_{tot}=\dfrac{m_{tot}}{n_{tot}}

Pi=yiPP_i=y_iP

h=i=1kcihih=\sum_{i=1}^k c_ih_i

Cp0,tot=i=1kciCp0,iC_{p0,tot}=\sum_{i=1}^k c_iC_{p0,i}

Air Mixtures

P=Pa+Pv\displaystyle P=P_a+P_v

ϕ=mvmg=PvPg\displaystyle \phi=\dfrac{m_v}{m_g}=\dfrac{P_v}{P_g}

h=Cp0,aT+ωhvh=C_{p0,a}T+\omega h_v

V˙tot=m˙totρtot\dot{V}_{tot}=\dfrac{\dot{m}_{tot}}{\rho_{tot}}

ω=0.622PvPa\displaystyle \omega=0.622\dfrac{P_v}{P_a}

u=Cv0,aT+ωuv\displaystyle u=C_{v 0,a}T+\omega u_v

m˙tot=m˙a(1+ω)\dot{m}_{tot}=\dot{m}_a(1+\omega)

ω1=Cp0,a(T2T1)+ω2hfg,2hg,1hf,2\omega_1=\dfrac{C_{p0,a}(T_2-T_1)+\omega_2h_{fg,2}}{h_{g,1}-h_{f,2}}

Combustion

CxHy+a(O2+3.76N2)bCO2+cH2O+3.76aN2C_xH_y+a(O_2+3.76N_2)\to bCO_2+cH_2O+3.76aN_2

AFmass=mairmfuel\displaystyle AF_{mass}=\dfrac{m_{air}}{m_{fuel}}

AFmass=AFmolMairMfuel\displaystyle AF_{mass}=AF_{mol}\dfrac{M_{air}}{M_{fuel}}

HR=RnihiH_R=\sum_Rn_i\overline{h}_i

hT,P=hf0+ΔhT,P\overline{h}_{T,P}=\overline{h}^0_f+\Delta\overline{h}_{T,P}

URP=Pne(hˉf0+ΔhˉPνˉ)eRni(hˉf0+ΔhˉPνˉ)i\displaystyle U_{RP}=\sum_Pn_e(\bar{h}_f^0+\Delta\bar{h}-P\bar{\nu})_e-\sum_Rn_i(\bar{h}_f^0+\Delta\bar{h}-P\bar{\nu})_i

nair=4.76(x+0.25y)\displaystyle n_{air}=4.76(x+0.25y)

AFmol=nairnfuel\displaystyle AF_{mol}=\dfrac{n_{air}}{n_{fuel}}

Q+HR=HPQ+H_R=H_P

HP=PneheH_P=\sum_Pn_e\overline{h}_e

HRP=Pne(hˉf0+Δhˉ)eRni(hˉf0+Δhˉ)i\displaystyle H_{RP}=\sum_Pn_e(\bar{h}_f^0+\Delta\bar{h})_e-\sum_Rn_i(\bar{h}_f^0+\Delta\bar{h})_i