Thermodynamics Equations Contents:Fluid PropertiesPressurePure SubstancesFirst LawWorkInternal EnergyEnthalpyPowerConservation of MassTransient Flow ProcessThermal EfficiencyHeat EnginesEntropyEntropy AnalysisDevice EfficiencyMixturesAir MixturesCombustion Fluid Properties ν=Vm\nu=\dfrac{V}{m}ν=mVP=FAP=\dfrac{F}{A}P=AF ρ=mV=1ν\rho=\dfrac{m}{V}=\dfrac{1}{\nu}ρ=Vm=ν1 Pressure PfA=P0A+mgP_fA=P_0A+mgPfA=P0A+mgPf=P0+∑0nρizigP_f=P_0+\sum_0^n\rho_iz_igPf=P0+∑0nρizig Pf=P0+ρfzgP_f=P_0+\rho_fzgPf=P0+ρfzg Pure Substances νfg=νg−νf\nu_{fg}=\nu_g-\nu_fνfg=νg−νfν(T)≈νf(T)\nu(T)\approx\nu_f(T)ν(T)≈νf(T)ν=xνfg+νf\nu=x\nu_{fg}+\nu_fν=xνfg+νfR=R‾MR=\dfrac{\overline{R}}{M}R=MR x=mgm\displaystyle x=\dfrac{m_g}{m}x=mmgν=(1−x)νf+xνg\displaystyle \nu=(1-x)\nu_f+x\nu_gν=(1−x)νf+xνgPV=nR‾T\displaystyle PV=n\overline{R}TPV=nRTPν=RT\displaystyle P\nu=RTPν=RT PhasePPPTTTν \nu ν Compressed LiquidP>PsatP>P_{sat}P>PsatT<TsatT < T_{sat}T<Tsatν<νf \nu < \nu_f ν<νf Saturated MixtureP=PsatP=P_{sat}P=PsatT=TsatT=T_{sat}T=Tsatνf<ν<νg \nu_f < \nu < \nu_g νf<ν<νg Superheated VapourP<PsatP < P_{sat}P<PsatT>TsatT>T_{sat}T>Tsatν>νg \nu>\nu_g ν>νg First Law Q=ΔU+ΔKE+ΔPE+WQ=\Delta U+\Delta KE+\Delta PE+WQ=ΔU+ΔKE+ΔPE+WΔKE=12∑meve2−12∑mivi2\Delta KE=\frac{1}{2}\sum m_ev^2_e-\frac{1}{2}\sum m_iv^2_iΔKE=21∑meve2−21∑mivi2 Q=ΔH+ΔKE+ΔPE+WQ=\Delta H+\Delta KE+\Delta PE+WQ=ΔH+ΔKE+ΔPE+WΔPE=∑megze−∑migzi\Delta PE=\sum m_egz_e-\sum m_igz_iΔPE=∑megze−∑migzi Work W=∫V1V2PdV\displaystyle W=\int_{V_1}^{V_2}PdVW=∫V1V2PdVPVn=CPV^n=CPVn=C w=Wm\displaystyle w=\dfrac{W}{m}w=mW\displaystyle\displaystyle Internal Energy U=mu\displaystyle U=muU=muΔu=Cv0ΔT\Delta u=C_{v 0}\Delta TΔu=Cv0ΔT ΔU=∑meue−∑miui\displaystyle \Delta U=\sum m_eu_e-\sum m_iu_iΔU=∑meue−∑miui Enthalpy H=mhH=mhH=mhh=u+Pνh=u+P\nuh=u+PνΔh=Cp0ΔT\Delta h=C_{p0}\Delta TΔh=Cp0ΔT H=U+PV\displaystyle H=U+PVH=U+PVΔH=∑mehe−∑mihi\displaystyle \Delta H=\sum m_eh_e-\sum m_ih_iΔH=∑mehe−∑mihi Power W˙=dWdt\dot{W}=\dfrac{dW}{dt}W˙=dtdWQ˙−W˙=∑m˙e(he+ve22+gze)−∑m˙i(hi+vi22+gzi)\displaystyle\dot{Q}-\dot{W}=\sum\dot{m}_e\left(h_e+\dfrac{v^2_e}{2}+gz_e\right)-\sum\dot{m}_i\left(h_i+\dfrac{v^2_i}{2}+gz_i\right)Q˙−W˙=∑m˙e(he+2ve2+gze)−∑m˙i(hi+2vi2+gzi) Q˙=dQdt\dot{Q}=\dfrac{dQ}{dt}Q˙=dtdQ Conservation of Mass ∑m˙i=∑m˙e\displaystyle\sum\dot{m}_i=\sum\dot{m}_e∑m˙i=∑m˙e Transient Flow Process Qcv−Wcv=∑me(he+ve22+gze)−∑mi(hi+vi22+gzi)+m2(u2+v222+gz2)−m1(u1+v122+gz1)\displaystyle Q_{cv}-W_{cv}=\sum m_e\left(h_e+\dfrac{v^2_e}{2}+gz_e\right)-\sum m_i\left(h_i+\dfrac{v^2_i}{2}+gz_i\right)+m_2\left(u_2+\dfrac{v^2_2}{2}+gz_2\right)-m_1\left(u_1+\dfrac{v^2_1}{2}+gz_1\right)Qcv−Wcv=∑me(he+2ve2+gze)−∑mi(hi+2vi2+gzi)+m2(u2+2v22+gz2)−m1(u1+2v12+gz1) Thermal Efficiency η=W˙netQ˙in\displaystyle\eta=\dfrac{\dot{W}_{net}}{\dot{Q}_{in}}η=Q˙inW˙netβ′=Q˙heatingW˙compressor\displaystyle\beta^\prime=\dfrac{\dot{Q}_{heating}}{\dot{W}_{compressor}}β′=W˙compressorQ˙heating β=Q˙coolingW˙compressor\displaystyle\beta=\dfrac{\dot{Q}_{cooling}}{\dot{W}_{compressor}}β=W˙compressorQ˙cooling Heat Engines W=QH−QLW=Q_H-Q_LW=QH−QLη=WQH=TH−TLTH\eta=\dfrac{W}{Q_H}=\dfrac{T_H-T_L}{T_H}η=QHW=THTH−TLβ′=QHW=THTH−TL\beta^\prime=\dfrac{Q_H}{W}=\dfrac{T_H}{T_H-T_L}β′=WQH=TH−TLTH (QHQL)rev=THTL\left(\dfrac{Q_H}{Q_L}\right)_{rev}=\dfrac{T_H}{T_L}(QLQH)rev=TLTHβ=QLW=TLTH−TL\beta=\dfrac{Q_L}{W}=\dfrac{T_L}{T_H-T_L}β=WQL=TH−TLTL Entropy ∮δQT=QHTH−QL,irrTL<0\displaystyle\oint\dfrac{\delta Q}{T}=\dfrac{Q_H}{T_H}-\dfrac{Q_L,irr}{T_L}<0∮TδQ=THQH−TLQL,irr<0s=Sms=\dfrac{S}{m}s=mSTdS=dU+PdVTdS=dU+PdVTdS=dU+PdVs2−s1=Cln(T2T1)s_2-s_1=C\ln\left(\dfrac{T_2}{T_1}\right)s2−s1=Cln(T1T2)s2−s1=Cv0ln(T2T1)+Rln(ν2ν1)s_2-s_1=C_{v 0}\ln\left(\dfrac{T_2}{T_1}\right)+R\ln\left(\dfrac{\nu_2}{\nu_1}\right)s2−s1=Cv0ln(T1T2)+Rln(ν1ν2)Sgen=mc.m.(s2−s1)c.m.−Q1→2TsurrS_{gen}=m_{c.m.}(s_2-s_1)_{c.m.}-\dfrac{Q_{1\to 2}}{T_{surr}}Sgen=mc.m.(s2−s1)c.m.−TsurrQ1→2 S2−S1=∫12(δQT)rev\displaystyle S_2-S_1=\int_1^2\left(\dfrac{\delta Q}{T}\right)_{rev}S2−S1=∫12(TδQ)revQ1→2=∫12TdS\displaystyle Q_{1\to 2}=\int_1^2 TdSQ1→2=∫12TdSTdS=dH−VdPTdS=dH-VdPTdS=dH−VdPs=sf+xsfgs=s_f+xs_{fg}s=sf+xsfgs2−s1=Cp0ln(T2T1)−Rln(P2P1)s_2-s_1=C_{p 0}\ln\left(\dfrac{T_2}{T_1}\right)-R\ln\left(\dfrac{P_2}{P_1}\right)s2−s1=Cp0ln(T1T2)−Rln(P1P2) Entropy Analysis S1→2=(m2s2−m1s1)cv+∑mese−∑misi−Q1→2Tsurr\displaystyle S_{1\to 2}=(m_2s_2-m_1s_1)_{cv}+\sum m_es_e-\sum m_is_i-\dfrac{Q_{1\to 2}}{T_{surr}}S1→2=(m2s2−m1s1)cv+∑mese−∑misi−TsurrQ1→2 wideal=12(vi2−ve2)+g(zi−ze)−∫ieνdP\displaystyle w_{ideal}=\dfrac{1}{2}(v^2_i-v^2_e)+g(z_i-z_e)-\int_i^e\nu dPwideal=21(vi2−ve2)+g(zi−ze)−∫ieνdP Device Efficiency ηT=wTwT,s=hi−hehi−he,s\displaystyle \eta_T=\dfrac{w_T}{w_{T,s}}=\dfrac{h_i-h_e}{h_i-h_{e,s}}ηT=wT,swT=hi−he,shi−heηN=ve2ve,s2\displaystyle \eta_N=\dfrac{v^2_e}{v^2_{e,s}}ηN=ve,s2ve2 ηP/C=wP/C,swP/C=hi−he,shi−he\displaystyle \eta_{P/C}=\dfrac{w_{P/C,s}}{w_{P/C}}=\dfrac{h_i-h_{e,s}}{h_i-h_e}ηP/C=wP/CwP/C,s=hi−hehi−he,s Mixtures ci=mimtot\displaystyle c_i=\dfrac{m_i}{m_{tot}}ci=mtotmiyi=nintot\displaystyle y_i=\dfrac{n_i}{n_{tot}}yi=ntotniRtot=∑i=1kciRiR_{tot}=\sum_{i=1}^k c_iR_iRtot=∑i=1kciRiMtot=[∑i=1kciMi]−1M_{tot}=\left[\sum_{i=1}^k\dfrac{c_i}{M_i}\right]^{-1}Mtot=[∑i=1kMici]−1u=∑i=1kciuiu=\sum_{i=1}^k c_iu_iu=∑i=1kciuiCv0,tot=∑i=1kciCv0,iC_{v 0,tot}=\sum_{i=1}^k c_iC_{v 0,i}Cv0,tot=∑i=1kciCv0,is2−s1=ln(T2T1)∑i=1kciCp0,i−ln(P2P1)∑i=1kciRis_2-s_1=\ln\left(\dfrac{T_2}{T_1}\right)\sum_{i=1}^k c_iC_{p0,i}-\ln\left(\dfrac{P_2}{P_1}\right)\sum_{i=1}^k c_iR_is2−s1=ln(T1T2)∑i=1kciCp0,i−ln(P1P2)∑i=1kciRi ∑i=1kci=1\displaystyle \sum_{i=1}^k c_i=1i=1∑kci=1∑i=1kyi=1\displaystyle \sum_{i=1}^k y_i=1i=1∑kyi=1Mtot=mtotntotM_{tot}=\dfrac{m_{tot}}{n_{tot}}Mtot=ntotmtotPi=yiPP_i=y_iPPi=yiPh=∑i=1kcihih=\sum_{i=1}^k c_ih_ih=∑i=1kcihiCp0,tot=∑i=1kciCp0,iC_{p0,tot}=\sum_{i=1}^k c_iC_{p0,i}Cp0,tot=∑i=1kciCp0,i Air Mixtures P=Pa+Pv\displaystyle P=P_a+P_vP=Pa+Pvϕ=mvmg=PvPg\displaystyle \phi=\dfrac{m_v}{m_g}=\dfrac{P_v}{P_g}ϕ=mgmv=PgPvh=Cp0,aT+ωhvh=C_{p0,a}T+\omega h_vh=Cp0,aT+ωhvV˙tot=m˙totρtot\dot{V}_{tot}=\dfrac{\dot{m}_{tot}}{\rho_{tot}}V˙tot=ρtotm˙tot ω=0.622PvPa\displaystyle \omega=0.622\dfrac{P_v}{P_a}ω=0.622PaPvu=Cv0,aT+ωuv\displaystyle u=C_{v 0,a}T+\omega u_vu=Cv0,aT+ωuvm˙tot=m˙a(1+ω)\dot{m}_{tot}=\dot{m}_a(1+\omega)m˙tot=m˙a(1+ω)ω1=Cp0,a(T2−T1)+ω2hfg,2hg,1−hf,2\omega_1=\dfrac{C_{p0,a}(T_2-T_1)+\omega_2h_{fg,2}}{h_{g,1}-h_{f,2}}ω1=hg,1−hf,2Cp0,a(T2−T1)+ω2hfg,2 Combustion CxHy+a(O2+3.76N2)→bCO2+cH2O+3.76aN2C_xH_y+a(O_2+3.76N_2)\to bCO_2+cH_2O+3.76aN_2CxHy+a(O2+3.76N2)→bCO2+cH2O+3.76aN2AFmass=mairmfuel\displaystyle AF_{mass}=\dfrac{m_{air}}{m_{fuel}}AFmass=mfuelmairAFmass=AFmolMairMfuel\displaystyle AF_{mass}=AF_{mol}\dfrac{M_{air}}{M_{fuel}}AFmass=AFmolMfuelMairHR=∑Rnih‾iH_R=\sum_Rn_i\overline{h}_iHR=∑Rnihih‾T,P=h‾f0+Δh‾T,P\overline{h}_{T,P}=\overline{h}^0_f+\Delta\overline{h}_{T,P}hT,P=hf0+ΔhT,PURP=∑Pne(hˉf0+Δhˉ−Pνˉ)e−∑Rni(hˉf0+Δhˉ−Pνˉ)i\displaystyle U_{RP}=\sum_Pn_e(\bar{h}_f^0+\Delta\bar{h}-P\bar{\nu})_e-\sum_Rn_i(\bar{h}_f^0+\Delta\bar{h}-P\bar{\nu})_iURP=P∑ne(hˉf0+Δhˉ−Pνˉ)e−R∑ni(hˉf0+Δhˉ−Pνˉ)i nair=4.76(x+0.25y)\displaystyle n_{air}=4.76(x+0.25y)nair=4.76(x+0.25y)AFmol=nairnfuel\displaystyle AF_{mol}=\dfrac{n_{air}}{n_{fuel}}AFmol=nfuelnairQ+HR=HPQ+H_R=H_PQ+HR=HPHP=∑Pneh‾eH_P=\sum_Pn_e\overline{h}_eHP=∑PneheHRP=∑Pne(hˉf0+Δhˉ)e−∑Rni(hˉf0+Δhˉ)i\displaystyle H_{RP}=\sum_Pn_e(\bar{h}_f^0+\Delta\bar{h})_e-\sum_Rn_i(\bar{h}_f^0+\Delta\bar{h})_iHRP=P∑ne(hˉf0+Δhˉ)e−R∑ni(hˉf0+Δhˉ)i